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COMPUTING IRREDUCIBLE REPRESENTATIONS OF 
SUPERSOLVABLE GROUPS OVER SMALL FINITE FIELDS 

A. OMRANI AND A. SHOKROLLAHI 

ABSTRACT. We present an algorithm to compute a full set of irreducible rep- 
resentations of a supersolvable group G over a finite field K, charK t jGI, 
which is not assumed to be a splitting field of G. The main subroutines of our 
algorithm are a modification of the algorithm of Baum and Clausen (Math. 
Comp. 63 (1994), 351-359) to obtain information on algebraically conjugate 
representations, and an effective version of Speiser's generalization of Hilbert's 
Theorem 90 stating that H1 (Gal(L/K), GL(n, L)) vanishes for all n > 1. 

1. INTRODUCTION AND MAIN RESULTS 

Recently Baum and Clausen [11 published an efficient algorithm for computing 
the absolutely irreducible representations of a supersolvable group G given in pc- 
presentation. The matrix representations their algorithm computes are adapted 
to a chief series T := (G = Gn > GnC I > > Go = {1}), i.e., any such 
representation D satisfies the following conditions: (1) the restriction D I GC of 
D to GC is equal to a direct sum of irreducible matrix representations of Gj, and 
(2) equivalent irreducible constituents of D I Gj are equal. The algorithm traverses 
the chief series T bottom-up and constructs in each step j among other data a 
complete set of inequivalent absolutely irreducible representations of Gj. These 
representations are almost unique: if L is a field containing a primitive eth root 
of unity, e being the exponent of G, and D and A are two equivalent irreducible 
T-adapted representations of LG of degree d, say, then the intertwining space 

Int(D, A) := {X E Ldxd j V g E G: XD(g) = A(g)X} 

is generated over L by a monomial matrix (see [2, Theorem 7.41). 
Now let K be a finite field, G be a supersolvable group such that charK t 

IGC, T be a chief series of G, and L be a finite extension of K which contains a 
primitive eth root of unity. The Galois group Gal(L/K) acts on the irreducible 
matrix representations of LG in a straightforward manner. In Section 2 we shall 
modify the algorithm of Baum and Clausen by collecting at each step information 
about the Gal(L/K)-orbits of the representations constructed. We then employ 
the information obtained at level n to compute realizations of direct sums of these 
representations over the field K. By a realization of a matrix representation D 
of LG over K we mean a matrix T E GL(d, L), d being the degree of D, such 
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that T-1D(g)T has entries in K for all g E G. Not every representation has a 
realization over K. Even more, if K is a prime field, X denotes the character of D, 
and K(X) := K(X(g) 1g E G) its character field, then D cannot have a realization 
over a proper subfield of K(X). The question whether an absolutely irreducible 
representation D of G has a realization over K(X) is hard to answer in general, 
i.e., for arbitrary K and arbitrary G. (This amounts to the question whether the 
Schur-index of the character of D equals 1, see [3, Kapitel V, ?141.) It is, however, 
well known that for finite fields and arbitrary finite groups the question has an 
affirmative answer [3, Kapitel V, Satz 14.101. 

In theory we thus know that any irreducible matrix representation D of LG 
has a realization over its character field. How can we compute such a realization? 
Let M be a subfield of L of index X, and /3 be the Frobenius automorphism of 
L/M. If D is an irreducible representation of LG of degree d, then so is DO, where 
DO:(g) := D(g): for all g E G. If M is the character field of D, then D is equivalent 
to DO, hence Int(D, DO) is generated by an invertible matrix S. A generaliza- 
tion of Hilbert's Theorem 90 due to Speiser [71 states that the first cohomology 
H1 ((pI), GL(d, L)) is trivial. (This is a modern interpretation of Speiser's result; 
see also [6, Chapter X, ?11.) Hence, for S E GL(d, L) there exists T E GL(d, L) such 
that T-1TO - S if and only if the norm S"' SOS of S equals the n x n-identity 
matrix I,n. Such a matrix T will give the desired realization of D over its character 
field M. In our applications, S is a monomial matrix and this allows to compute 
T from S efficiently, see Section 3. 

Now we are almost done. Namely, we may suppose that D is an absolutely irre- 
ducible representation of G with character X such that D(g) has entries in K(x). Let 
a be the Frobenius automorphism of K(X)/K. Then the trace of D over K defined 
as TrK(D) := D f D' E... ED DCn , m := [K(x): K], has character field equal to 
K and a realization of TrK(D) over K can be computed easily, see Section 3. Fur- 
thermore, TrK(D) is an irreducible KG-representation (since any of its irreducible 
constituents over K has to be invariant under a); conversely, any irreducible KG- 
representation is the trace over K of some irreducible MG-representation, where 
M is a splitting field of the representation in question containing K. (For these and 
related facts see [4, Chapter VII, ?11.) To obtain the irreducible representations of 
KG we first compute a set YF' of representatives of Gal(L/K)-orbits of irreducible 
representations of LG, and for each such representation a realization of its trace 
over K. Starting from a pc-presentation of G and the chief series T induced by 
that, the first two steps of our algorithm are as follows: 

Step 1. We first modify the algorithm of Baum and Clausen to compute a full set 
F of pairwise inequivalent irreducible monomial and T-adapted representations of 
LG, where L is a field extension of K containing a primitive eth root of unity, and 
a permutation ay of ,F such that F' is equivalent to -yF: F' ,v yF. Here a is the 
Frobenius automorphism of L/K. We then compute a full set ' of representatives 
of Gal(L/K)-orbits of ,F and for each F E ,F the degree of the character field of F 
over K. 

Step 2. For each F E we compute a realization TF of F over its character field 
and then a realization of the trace of TH-1FTF over K. 

Similar to the algorithm of Baum and Clausen, the arithmetic we use in these 
two steps consists just of symbolic computation in LX, where L is a field extension 



REPRESENTATIONS OF SUPERSOLVABLE GROUPS 781 

of K containing an eth root of unity. More precisely, we represent nonzero elements 
of L as integers i with 0 < i < ILI - 1, where i corresponds to the element w' and 
w is a fixed generator of LX. This representation of L allows to solve efficiently 
equations of the form N(x) = a or x(x7)-l = a, where a E L, N is the norm of 
L relative to a subfield M, and a is the Frobenius automorphism of L/M. We 
shall need solutions to these kinds of equations in the second step of our algorithm. 
Moreover, as we will need primitive elements for subfields of L, this representation 
of L allows us to compute in advance these generators and store them in a list Q. 

The final step of the algorithm computes the KG-representations from the al- 
ready computed realizations. This step requires matrix multiplication over L, and 
symbolic computation in Lx does not suffice for this purpose. Strategies to solve 
this problem are discussed in the last section. 

Many thanks go to an anonymous referee for important comments and to Michael 
Clausen for communicating to us the problem discussed in this paper and for many 
stimulating discussions. 

2. IRREDUCIBLE LG-MODULES AND Gal(L/K)-ORBITS 

The first step of our algorithm takes as input a supersolvable group G in pc- 
presentation and a finite extension L of K containing a primitive eth root of unity; 
it outputs a list F of pairwise inequivalent irreducible representations of LG and a 
permutation 7 of $ such that F' -yF, ae being the FRobenius automorphism of 
L/K. 

For the rest of this section we set Ti := (Gi > GiCI > ... > Go = {1}) for 
1 < i < n. In particular, T = Tn. We call a matrix e-monomial if it is monomial 
and its nonzero entries are eth roots of unity. An LG representation F is called 
e-monomial if F(g) is e-monomial for any g E G. 

The algorithm of Baum and Clausen in [11 computes the list TF; we modify this 
algorithm to obtain additional information on the orbits of TF under the action of 
the Galois group of L/K; this information is encoded as the permutation -Y. 

Our algorithm works bottom up along T. At level i, 1 < i < n, it takes the 
following input: 

(1) TF, a full set of inequivalent irreducible e-monomial representations of LGi-1 
such that eFc. F is 7i-l-adapted; 

(2) For every i - 1 < j < n a permutation 7rj of F such that F93 7rjF for all 
F E as well as e-monomial matrices Xj,F E Int(F93 , 7rjF), F E c; 

(3) A permutation -y of F such that Fa -yF, as well as e-monomial matrices 
MF G Int(Fa,yF), F G F; 

and computes the following output: 
(1) D, a full set of inequivalent irreducible e-monomial representations of LGC 

such that EDC ID is Ti-adapted; 
(2) For every i < j < n a permutation rj of D such that D93 TrjD for all D E D 

as well as e-monomial matrices Yj,D E Int(D9, TrjD), D E D. 
(3) A permutation 6 of D such that DA E D, as well as e-monomial matrices 

ND E Int(D ,ED), D E D; 
Outputs (1) and (2) are computed in exactly the same way as in the algorithm of 
Baum and Clausen [1]. Therefore, we only discuss the computation of Output (3) 
and assume that we have already performed the two phases of the algorithm in [1]. 
Note that during the construction at level i in Phase 1 there is built a bipartite 
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graph in which F E LF and D E D are linked if and only if F is a constituent of 
D D Gi_1. We will need this information to compute 6 and ND. For this we proceed 
in a similar way as does Phase 2 of the Baum-Clausen algorithm. Let F E ,F and 
p := [Gi: Gi-1]. We distinguish two cases. 

Case 1. Suppose that 7riF = F, i.e., F9g F. Since (F9i)' = (Fl)9i, we obtain 

(yF)9g (F`)9i = (F9g)a Fa yF. 

We already know p extensions DO, ... , DP-1 of F and p extensions Ao,... , Ap-1 
of yF. For 0 < k < p we have 

Do I Gil = (Dk I Gb )a = Fa 'yF, 

hence Do' is equivalent to one of the representations Ao,-.. , Ap-1. Thus there 
exists a permutation p of {O,... ,p - 1} such that Do'- Apk for 0 < k <p. Since 
Int(Da,/Apk) = Int(Fy,7F), we may set NDk MF. To determine 6Dk, note 
that 

MFDO'(gi)M,Wl = At(gi) = x'(giGi_i)Ao(gi) 

for a unique integer f with 0 < f < p, where X is a nontrivial representation 
of Gi/Gi-I. To compute X, we just need to compare a nonzero entry of both 
sides of the above e-monomial matrix equation. We then set 8Do := A/. For 
other values of k we can determine 6Dk by cyclic shifts: Do' = (Xk 0 Do) a 

(Xk)a 0 DO (Xa)k 0 (Xj 0 A0). Hence 6Dk = A(kq+?)mod p, since a is the 
Frobenius automorphism over K = Fq 

Case 2. Suppose that 7riF + F, i.e., F9g /, F. In Phase 1 we have already con- 
structed D E D such that D D Gi1I = (3P_1Fk and Fk = 1riF is of degree, 
say, f. Since (F T Gi)a = Fo'3 Gi and F' - -yF, ED is the unique representa- 
tion A E D such that yF is an irreducible constituent of A A Gi-I. According 
to our construction, A i Gi-I = (3P_1 Ak with 4?k = irk4b for some b E F. 
There is a permutation p of {O,... ,p - 1} such that yFk = bpk as well as e- 
monomial matrices Mk := MFk E Int (Fko, % pk) . To compute ND E Int (DA, ED), 
we consider Int(Da a Gi-1, D I Gi-1). By Schur's Lemma there exist constants 
do,... ,dpiE LX suchthat 

ND = (PP X If ) @ dkMk) 
k=O 

where Pp is the p x p permutation matrix whose rows have been permuted according 
to p. We may assume that do = 1. To determine the other dk, we use the equation 

(2.1) NDDa(gi)ND1 = (D)(gi). 

According to our construction in Phase 1 there are e-monomial matrices Tk, Sk E 

Lf xf such that 

D(gi) = (PF X If) ( -Tk) 

and 

(6D)(gi) (7(P, 0X If) ( Sk) 
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where 7r =(,... ,p - 1). Hence, (2.1) is equivalent to 

(Por et If M TdTM )* Tka nd d-SM-') 
k=O k=O k=O 

=(Pp_17p (oif) * Spk) 
k=O 

Since do = 1, we can successively determine di,. ,dp-l by comparing for each k 
one nonzero entry of MtkTkadk lMk 1 and Spk. 

We now compute a set YF' of representatives of Gal(L/K)-orbits of ,F and for each 
F E F with character XF the degree of the character field dF := [K(XF): K] of F 
as well as a matrix SF E Int(FadF , F). (Note that adF generates the Galois group 
of L/K(XF).) Notice that ? dF is the smallest integer m such that Fa F, 
i.e., the smallest m such that -ymF = F. Furthermore, it is easily checked that 

SF := M7e-1FMWe-2F MF E Int(Fa',F). 

The algorithm to compute the required data is now straightforward. We take the 
first representation F in .F, append it to the list YF', and set M := MF. Then we 
go through all -y2F, delete them from the list .F, update M:= MyZFMO', and stop 
as soon as -yeF equals F, deleting F from ,F in this last step. In this way we also 
obtain dF. We repeat the whole process until the list ,F is empty. 

3. REALIZATION OVER SUBFIELDS 

In this step of our algorithm we take the output of the last step and compute at 
first for each F E ' a realization TF of F over K(XF), where XF is the character 
of F. We then proceed by computing a realization of the trace of TFFTF1 over K. 

It is well known that any absolutely irreducible representation of LG has a 
realization over its character field [3, Kapitel V, Satz 14.101. We would like to give 
here a proof of this fact which builds the basis of our algorithm to find such a 
realization. We use the following setup: F is an irreducible representation of LG 
of degree f, M is the character field of F, [L: M] =: X, and 3 is a generator of 
Gal(L/M). For a matrix A E Lmxm, we define the norm of A by NL/M(A) := 

A:"' *... A. Note that if m : 1, then the norm of A does not necessarily belong to 
mmxm 

The representations F and FO are equivalent since they have the same character. 
Hence there exists an invertible matrix S E Int(FO, F). Suppose that there exists 
T c GL(f, L) such that T-1TO = S. Then, SFS-1 = FO implies that TFT-1 is 
invariant under 3, hence T is a realization of F over M. By Speiser's Theorem [71 
mentioned in the introduction such a matrix T exists if and only if NL/M (S) = If. 
(Speiser's original proof works only over infinite fields; for a general proof, see [6, 
page 1511.) A straightforward calculation shows that NL/M (S) E Int(F, F). Hence, 
Schur's Lemma implies that NL/M(S) = cIf for some c C L. But NL/M(S)O = 

S-1NL/M(S)S = CIf, hence c E M. Since L is finite, any element in M is the norm 
of an element in L, hence there exists d c L such that NL/M(dS) = If. Replacing S 
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by dS if necessary, we obtain the existence of T, a realization of F over its character 
field. (See also [3, Kapitel V, Bemerkung 14.141.) 

hRom the second step we know ? := [L: K]/dF and an e-monomial matrix 
S = SF E Int(FO F), 3 = CedF. Let S =: P,diag(S(1),... ,S(f)). We first 
compute some auxiliary data. Suppose that 7r can be written as the product of 
v disjoint cycles of lengths Li,... , , and let Pl, , p, be a complete set of dis- 
joint representatives of each cycle. We compute v, L1,... , L, and P1,... , Pi/, then 
a nonzero entry ay := 7J'_ S(7rjl)'" j of NL/M(S), and some element c of L 
satisfying NL/M(C) = 7-1; we then replace S by cS. Now we have NL/M(S) = If. 
As Li divides the order of 7r and the latter divides X, we have fil#. Hence, we can 
extract from the precomputed list Q of primitive elements of subfields of L elements 
yl, ., Yv E L such that yi has degree Li over K. The rest of the algorithm, written 
in pseudo code, is now as follows (OJ means 0,.. 0 j-times): 

1 t:=0; 

2 fori=1tovdo 
Li-1 

3 yi := S(lrjpi): 1ezlJ); 
j=o 

4 Compute xi E L such that -yi = xj 
-ei 

5 T[i] (Ot, xi, xiyi, ... , xiy 4t-1 0m-t-Li)T. 

6 forj=Itofi-1 do 

7 T[7r3p,] := S(Ji3pi)-iT[qr-1pi]3; 
8 od; 

9 t:=t+ i; 
10 od; 

11 TF := (T[1] I T[21 ... I T[f]). 

It is not clear in advance that the above algorithm is executable since there might 
be no element xi satisfying the equation in line 4. In the following we show that 
such an xi always exists and prove that the matrix T obtained by our algorithm is 
in fact a realization of F over M. 

Let T E Lfxf have columns T[1],... ,T[f]. Then TS = TO if and only if for all 
1 < i < v and all 1 < j < Li we have 

(3.1) T[7ripil = S(7rq-1pi)-iT[7rJ1pi]O. 

This implies that T[pi] = -yi-T[7eipi]/3ez, hence T[pil = NL/Mi(yi)-1T[PiJ]3i which 
gives NL/Mi(Qyi) = 1, where Mi is the fixed field of Oti. Hence, by Hilbert's Theo- 
rem 90 there exists xi satisfying the condition in line 4 and our algorithm is exe- 
cutable. Line 7 guarantees that (3.1) is satisfied for all 1 < i < v, 1 < j < Li. To see 
that it is also satisfied for j =i, we only need to check that T[pi] = `T[pi]O 
But this follows from the choice of xi and the fact that yi is fixed under /3Qi. It 
remains to show that T is invertible. This is true because the Vandermonde matrix 

((y3 )k) is invertible (since yi has degree Li over K). 
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At this stage of our algorithm we have a list F' of representatives of Gal(L/K)- 
orbits of the irreducible representations of LG, for each F c F' the degree dF Of 

the character field of F over K, and a realization TF of F over its character field. 
We know that DF = dFO 1 Fi is equivalent to an irreducible representation of 
KG and that all irreducible representations of KG are obtained this way. 

Let F E F' be of degree f and F := TFFTF1. We extract from Q a primitive ele- 
ment ay of the character field of F over K, i.e., an element having degree d = dF over 

K. Let U := V 0 If, where V is the Vandermonde matrix V ((i3) ) 
It is easily verified that 

/TF 

T T 
R := U 

T 
d-1 

is a realization of D = 1 F' over K. 

4. THE FINAL STEP AND CONCLUDING REMARKS 

Given a finite field K, a supersolvable group G of exponent e in pc-presentation, 
and a field extension L of K containing a primitive eth root of unity, the first two 
steps of our algorithm have computed a set F' of representatives of Gal(L/K)- 
orbits of the irreducibles of LG, and for each such representation a realization 
of its trace over K. One possible strategy to compute the KG representations 
out of these data would be to represent L as the residue class ring modulo an 
irreducible polynomial, compute a primitive element w of LX, replace each entry 
of the matrices involved by their corresponding polynomial representations, and 
proceed with matrix multiplication (and inversion) over L. Another strategy is 
to start with a representation of L as a polynomial residue class ring, and to go 
through all the steps of the algorithm using field arithmetic in L. Here we face the 
difficulty of solving equations of the type xd = a, where d is a divisor of LI - 1. 
Both these strategies consume exponential time, and it seems that in practice a 
correct implementation of any of these strategies is rather complicated. 

Nevertheless, we have implemented our algorithm in the computer algebra sys- 
tem GAP [5]. In this implementation the final step is performed by using a table 
of Jacobi logarithms for L, which needs exponential space (and time). Although it 
is impractical for large ILI, this strategy performs well for small sizes of L. 
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